
Preprint
UCRL- JC- 142268

Creating Ensembles of
Decision Trees through
Sampling

C. Kamath, E. Cantu-Paz

This article was submitted to
International Conference on Machine Learning, Williams College,
MA, June 28- July 1, 2001

February 2,2001
U.S. Department of Energy

Livermore

Laboratory

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This work was performed under the auspices of the United States Department of Energy by the
University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

This report has been reproduced directly from the best available copy.

Available electronically at http: / /www.doc.Pov/bridee

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from

US. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reDorts@adonis.osti.g;ov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@ntis.fedworld.gov
Online ordering: http: / /www.ntis.gov/orderinP.htm

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http: / /www.llnl.gov/tid /Library.html

mailto:orders@ntis.fedworld.gov

Creating Ensembles of Decision Trees Through Sampling

Chandrika Kamath KAMATH2@LLNL.GOV
Erick Cantti-Paz CANTUPAZ 1 @LLNL. GOV

Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, P.O. Box 808, L-561, Liver-
more, CA 94551

Abstract
Recent work in classification indicates that
significant improvements in accuracy can be
obtained by growing an ensemble of classi-
fiers and having them vote for the most pop-
ular class. This paper focuses on ensembles
of decision trees that are created with a ran-
domized procedure based on sampling. Ran-
domization can be introduced by using ran-
dom samples of the training data (as in bag-
ging or arcing) and running a conventional
tree-building algorithm, or by randomizing
the induction algorithm itself. The objective
of this paper is to describe our first experi-
ences with a novel randomized tree induction
method that uses a subset of samples at a
node to determine the split. Our empirical
results show that ensembles generated using
this approach yield results that are compet-
itive in accuracy and superior in computa-
tional cost.

1. Introduction
Ensembles of classifiers, also referred to as forests
in the case of decision tree classifiers, are increas-
ingly gaining acceptance in the data mining com-
munity. This is prompted by many factors, includ-
ing a significant improvement in accuracy (Breiman,
1996a; Freund & Schapire, 1996; Quinlan, 1996; Bauer
& Kohavi, 1990), the potential for on-line classifica-
tion of large databases that do not fit into memory
(Breiman, 1996b), and the ease with with these tech-
niques lend themselves to scalable parallelization (Hall
et al., 2000). There are different ways in which en-
sembles can be generated, and the resulting output
combined to classify new instances. Implicit in some
of these ensembles is the concept of randomness that
is introduced either through the randomization of the
training set, or the randomization of the classifier it-
self.

In this paper, we discuss one particular approach to
randomization, namely the use of random sampling to
determine the split made at each node of a decision
tree. As the split made at a node is likely to vary with
the sample selected, this technique can be used to gen-
erate ensembles of trees. Our objective is to show that
this approach not only improves the accuracy of the
classifier like other approaches to ensembles, but does
so at a relatively low cost. Our experimental studies
with public domain datasets indicate that the accu-
racy obtained is relatively insensitive to the percent-
age of instances sampled at a node. This allows us to
lower the cost of generating each tree in the ensemble,
thus ameliorating the cost of generating the ensemble
of trees.

The paper is organized as follows: In Section 2, we
discuss the various ways in which we can generate en-
sembles of classifiers. Next, in Section 3 we describe
the use of sampling to introduce randomization in the
induction of decision trees. We describe our experi-
mental results in Section 4 and conclude in Section 5
with a summary and ideas for future work.

2. Creating Ensembles of Classifiers

There is considerable diversity in the way in which
ensembles of classifiers can be created (Dietterich,
2000a). In this section, we briefly discuss some of the
more popular approaches.

2.1 Changing the Instances Used for Training

In this approach, each classifier in the ensemble is gen-
erated using a different sample of the training set.
There are several ways in which this can be accom-
plished:

0 Bagging: In this approach, a new sample of the
training set is obtained through bootstrapping
with each instance weighted equally (Breiman,
1996a). This technique works very well for un-

,

mailto:KAMATH2@LLNL.GOV

stable algorithms such as decision trees and neu-
ral networks, where the classifier is sensitive to
changes in the training set and significantly dif-
ferent classifiers are created for different training
sets. In bagging, the results of the ensemble are
obtained by using a simple voting scheme. Each
classifier can be generated independent of the
other, and randomization is introduced through
the random sampling used to create each sample
of the training set.

2.3 Introducing randomness in the classifier

Unlike the previous techniques, where the input to the
classifier is changed to generate the ensemble, it is pos-
sible to create the ensemble by changing the classi-
fier itself. For example, in neural networks, the initial
weights are set randomly, thus creating a new network
each time. In decision trees, instead of selecting the
best split at a node, one can randomly select among
the best few splits to create the ensemble (Dietterich,
2000b). Our approach to randomizing the classifier is
to use only a sample of the instances at a node of a
decision tree in order to make the decision. We explore

Boosting: In this case, a new sample of the train-
ing set is obtained using a distribution based

0

2.2

on- previous results (Freuid & Schapire, 1996).
Unlike the Bagging algorithm, which uniformly
weights all the instances in the training set, Boost-
ing algorithms adjust the weights after each clas-
sifier is created to increase the weights of misclas-
sified instances. This essentially implies that the
training sets for the classifiers have to be created
in sequence, instead of in parallel, as in the case of
Bagging. The different weights for the ensembles
can either be directly incorporated into the clas-
sifier by working with weighted instances, or be
applied indirectly by selecting the instances with
a probability proportional to their weights. Fur-
ther, in boosting, the results of the ensemble are
obtained by weighting each classfier by the accu-
racy on the training set used to build it. As a
result, better classifiers have a greater contribu-
tion to the end result than the poorer classifiers.
There are several variants of Boosting which differ
in the way the instances are weighted, the condi-
tions under which the algorithm stops, and the
way in which the results from the ensemble are
combined (Breiman, 1998; Bauer & Kohavi, 1990;
Freund & Schapire, 1996).

Pasting: In this approach, the ensemble of trees
is grown using a sub-sample of the entire training
set (Breiman, 1996b). This technique has been
shown to be useful when the entire training set is
too large to fit into main memory.

Changing the features used in training

In this approach, each new classifier is created using a
subset of the original features. For example, Ho (1995)
has illustrated the use of this technique with decision
trees and Cherkauer (1996) has used it with neural
networks. This approach tends to work only when the
features are redundant, as poor classifiers could result
if some important feature is left out. The approach
used to select the features could introduce randomiza-
tion to the procedure.

this approach further in the next section.

3. Sampling in Tree Induction
The idea behind our approach is very simple: at each
node of the decision tree, instead of using all instances
to determine the best split, we use only a random sam-
ple of the instances. This randomized procedure re-
sults in different trees which can be combined in en-
sembles. However, an efficient implementation of the
approach can be non-trivial.

In a decision tree, the split at each node is obtained by
first sorting each of the continuous features and then
selecting a split point that optimizes a certain crite-
rion (Breiman et al., 1984). The more efficient imple-
mentations of decision trees sort all the features once
at the beginning. Each feature is associated with its
instance identification to keep track of which feature
in the sorted list is associated with which instance.
Then, at each node, using an appropriate split crite-
rion, the optimal split point is found for each feature.
The best split across all features is chosen as the split
point at the node. When the instances at a node are
split among the children nodes, we want to maintain
the sorted order of each feature for the purpose of ef-
ficiency. In this scenario, if we want to split the in-
stances at a node using a split based on only a sample
of the total instances, we have two options:

0 Sample with sorting: In this case, we randomly
select p percentage of the n instances for a fea-
ture. The sampling can be done with or without
replacement. But, it results in the sampled set
of feature values being unsorted. Therefore, af-
ter the sampling at a node on each feature, an
additional sort is needed.

0 Sample without sorting: In order to main-
tain the sorted order of the sampled features at a
node, one option would be to divide the instances
into n *p/lOO parts, each part containing lOO/p

Table 1. Benchmark data sets used for studying the effect of sampling on the generation of ensembles.
~~

DATA SET # TRAINING # TEST # CLASSES # DISCRETE # CONT

INSTANCES INSTANCES ATTRIBUTES ATTRIBUTES

GLASS 214 7 9
BREAST CANCER 699 2 9
PIMA INDIAN DIABETES 768 2 8
GERMAN 1000 2 13 7
SATELLITE IMAGE 4435 2000 6 36
LETTER RECOGNITION 16000 4000 26 16

instances, and randomly select an instance from
each part. The sampled set would then remain
ordered and no sorting is required.

Table 2. Test error on the benchmark datasets for the gen-
eration of a single tree.

Once we have decided how to sample the instances,
we can either use the same sampled set of instances
for all the features, or obtain a new sample for each
feature. In our work, we have chosen the latter ap-
proach. Regardless of how the samples are obtained
at each node, the process of sampling introduces ran-
domization in the induction of the decision tree. This
can be used to generate an ensemble of trees and, by
appropriately combining the results of these trees, we
can obtain classifiers with better generalization accu-
racy.

4. Experimental Results
In this section, we describe the results of our experi-
ments with the generation of ensembles using the sam-
pling approach. We conducted our experiments on
some of the larger datasets available from the repos-
itory at the University of California at Irvine (UCI
Dataset, 2001). The details of the data sets used are
summarized in Table 1. None of the datasets consid-
ered have any missing attributes. Note that except
for the Glass dataset, the remainder of the data sets
are relatively large. This choice was intentional as we
believe that the use of sampling is most beneficial for
large datasets.

In some cases, the datasets were available with a test
set. In such cases, we performed our experiments 10
times to account for the randomization and averaged
the results. In cases where there was no test set avail-
able, we used 10-fold cross-validation, and averaged
the results over 10 runs. Based on the observation
by Breiman (1996a) that most of the improvement in
bagging is evident within ten replications, we used 10
trees to create the ensemble. This would give us the
performance improvement bought by a single order of
magnitude increase in the number of trees. The results

DATA SET ERROR (%)

GLASS 32.81
BREAST CANCER 5.17
PIMA INDIAN DIABETES 27.88
GERMAN CREDIT 29.95
SATELLITE IMAGE 15.75
LETTER RECOGNITION 30.62

of the ensemble were combined by a simple unweighted
voting.

We did not use pruning in the generation of the trees as
we expected the use of ensembles to eliminate the over-
fitting. We also used the same sampling percentage at
each node of the tree, though it is possible to vary this
value at each node. In addition, we stopped the sam-
pling when the number of samples was less than twice
the number of features at a node. The sub-tree at this
node was then generated without using any sampling.
This was done to ensure that there were enough sam-
ples at a node relative to the size of the hypothesis
space, so that we could obtain an accurate classifier.

The decision trees in our experiments were generated
using the Gini index as the split criterion (Breiman
et al., 1984). The test error averaged over multiple
runs for the case of a single tree is indicated in Table 2.
This gives us the baseline results for comparison with
the results obtained using the ensembles.

4.1 Effects of Sorting in Sampling

For our initial experiments, we first selected the sec-
ond option in Section 3 where the sampling was done
without any need for sorting. We believed that the
compute time required would be less as there was no
sorting on each sample for each feature at each node.
In Table 3, we present the results of the accuracy of

... ,

Table 3. Test error on three datasets illustrating the effects of sampling with and without sorting

PERCENTAGE SAMPLED GLASS P I M A INDIAN D I A B E T E S GERMAN C R E D I T

ERROR ERROR ERROR ERROR ERROR ERROR
W/O SORTING W/ SORTING W/O SORTING W/ SORTING W/O SORTING W/ SORTING

0.9 34.38 27.33
0.8 34.71 26.62
0.7 37.67 27.47
0.6 34.43 26.48
0.5 28.57 27.48
0.4 31.14 28.00
0.3 29.52 27.33
0.2 27.24 27.33
0.1 28.95 30.14

0.05 32.81 32.81
0.01 32.81 32.81

26.96
26.59
27.26
28.09
24.67
24.50
24.47
24.59
24.67
25.11
27.88

24.35
24.63
25.02
24.72
24.93
24.59
24.65
24.90
25.04
25.04
27.88

30.01
30.27
30.35
30.18
28.56
28.80
28.70
28.09
26.77
27.14
29.95

28.55
28.59
28.30
28.48
28.68
28.43
27.87
27.51
27.17
26.62
29.95

the ensembles as we varied the percentage of instances
sampled at each node of the trees. We present our re-
sults for three of the smaller datasets: Glass, Pima In-
dian diabetes, and German Credit. The error is given
for both the case where we sample without sorting and
with sorting.

We observe from the table that for a large sample size,
the error with sorting was less than the error with-
out sorting. This observation held across the three
datasets and the different percentages of the instances
sampled at a node. When we investigated this further,
we found that, in the case without sorting, the way the
instances were divided into parts had an effect on the
results. Recall that to obtain a sample at p percentage,
we divide the instances n at a node into n*p/100 parts,
each part containing 1OO/p instances. However, when
p > 50%, this means that the number of instances in
each part is 1, with the possible exception of the last
part, which includes all remaining instances. For ex-
ample, suppose we have n = 800 instances at a node,
and we want a p = 80% sample. This will imply that
of the 640 instances to be selected from the 640 parts,
the first 639 instances will come from parts that are
only a single instance wide. The last sampled instance
will be from a part that is (800 - 640) = 160 wide,
thus resulting in a biased sample and inferior results.

Based on this observation, for the remainder of our
experiments, we chose to do the explicit sorting for
sampling percentages higher than 50% and opted for
the non-sorting version of sampling for lower values
of percentage of instances sampled. This enabled us
to use the more efficient implementation without any
detrimental effect in the generalization error.

4.2 Accuracy for Sampled Ensembles

An important observation from Table 3 is that the ac-
curacy of the results appears to be somewhat indepen-
dent of the percentage of instances sampled at a node.
In Table 4 we present the results for the remainder of
the datasets: Breast Cancer, Satellite Image, and Let-
ter Recognition. We notice again that the accuracy is
roughly constant as we vary the percentage sampled,
with the exception of the results for a sampling per-
centage of 40%, where the results are less accurate.

In order to explain this behavior, we took a second look
at how we split the instances at a node of the tree. For
each feature, we need to identify a value such that a
split point on that feature at that value will optimize
the split criterion. By sampling the instances at a node
without sorting, we are essentially selecting a sample
that is close to uniformly distributed across the in-
stances. This ensures a split point that is close to the
optimal split point. In the case of sampling without
sorting, in the worst case, the split point selected could
be as far from the true split point as the width of the
part from which it is selected. When we introduce ran-
domness through sampling, it is likely that the trees
created in the ensemble are very different. However,
the decision boundaries, that is the hyperplanes sepa-
rating the classes, for all the trees will be very close to
each other. In contrast with a single tree, the decision
boundary for the ensemble will be “soft”, leading to a
better generalization error.

Note that as we reduce the percentage of instances
sampled, the error increases again, some times revert-
ing to the value in Table 2. This is because at some
point, the sample size at the base node of the tree be-
comes small enough such that the number of samples

Table 4. Test error on three datasets illustrating the effects of sampling in the creation of ensembles

PERCENTAGE SAMPLED BREAST CANCER SATELLITE IMAGE LETTER RECOGNITION

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.05
0.01

3.56
3.63
3.37
3.26
4.03
4.72
4.04
3.76
3.67
3.56
5.17

11.64
11.55
11.67
11.56
12.36
13.37
12.06
11.84
11.65
11.83
15.75

11.62
11.73
11.58
11.97
13.05
35.76
19.84
12.71
13.25
12.50
13.79

is at least twice the number of features. As explained
earlier, at this point, each tree in the ensemble be-
comes identical to the tree created without sampling,
and the error is the same as that for a single tree. For
sample percentages just a little higher than this value,
the nodes at the higher levels of the tree use sampling,
but those at the lower levels take the “no-sampling”
path, resulting in a higher error value for the ensem-
bles, but lower than the error for a single tree. This
observation could be used as a rough rule of thumb to
determine the smallest percentage of the samples to
use in creating the ensembles.

In terms of the accuracy obtained by the our ensembles
relative to other similar approaches, our results are
competitive with those obtained through Boosting and
Bagging (Freund & Schapire, 1996; Quinlan, 1996).

4.3 Computat ional Costs

We would expect that the use of sampling in the tree
induction would reduce the total time required in com-
parison with tree induction without sampling. This
is because fewer instances have to be considered in
determining the split value at each node of the tree.
Further, the process of sampling without sorting adds
little to the overhead due to the sampling itself. Our
initial timing results are presented in Table 5. The
times given are in seconds on a 800MHz Pentium I11
system with 512MB of memory. Since we generate 10
trees in the ensemble, we considered a sampling rate
of 0.1. The comparison is between the average of 10
runs of the single tree generated without sampling vs.
10 runs of the ensemble. We compare the total time
for training and testing, though our timing results in-
dicate that a large part of this is training time.

?Ve note that the ensembles are slower by a factor of 5
and 8 for the letter recognition and satellite datasets,

Table 5. Timing results (in seconds) comparing 10 runs of
the training/testing of a single tree without sampling vs.
an ensemble of 10 trees with sampling at 10%.

SATELLITE LETTER
IMAGE RECOGNITION

SINGLE TREE 61 S 262 s
ENSEMBLE 488 s 1279 s

respectively. If we had not used any sampling, the
time for the ensembles of 10 trees would have been a
factor of 10 greater. Our timing results show that a
substantial amount of time in the generation of the
decision tree is in the initial sorting of the features.
Since the same training set is used for all the trees in
the ensemble, we expect that the time for the ensem-
bles can be reduced further by doing the sort only once
for all the trees. This approach to reducing the cost of
ensembles is not applicable in the case of bagging or
boosting, the training set varies across the classifiers
in the ensemble and the sorting has to be done in each
case.

5. Summary and Future Work
In this paper, we have introduced an approach to the
generation of ensembles where randomization is intro-
duced in the decision tree induction through the use of
sampling. Our early experimental results using pub-
lic domain datasets show that this is a promising a p
proach, both in terms of accuracy and computational
cost. However, much remains to be done. We want to
improve the performance of the ensembles by sorting
the features of the training set only once for each tree
in the ensemble. h r the r , we are interested in seeing if
the results would be improved by using more trees in

.. . ” ” ..., ,

the ensemble. In addition, we plan to conduct studies
with additional datasets to see if the results carry over
to these datasets as well.

Acknowledgements

This work was performed under the auspices of the
U.S. Department of Energy by University of Califor-
nia Lawrence Livermore National Laboratory under
contract No. W- 7405-Eng-48.

References
Bauer, E., & Kohavi, R. (1990). An empirical com-

parison of voting classification algorithms: Bagging
boosting and variants. Machine Learning, 36, 105-
139.

Hall, L., Bowyer, K., Kegelmeyer, W., Moore, T., &
Chao, C. (2000). Distributed learning on very large
data sets. Workshop on Distributed and Parallel
Knowledge Discover, in conjunction with KDD2000.

Ho, T. K. (1995). Random decision forests. Proceed-
ings of the 3rd International Conference on Docu-
ment Analaysis and Recognition (pp. 278-282).

Quinlan, J. (1996). Bagging, boosting, and C4.5. Pro-
ceedings of the Thirteenth National Conference on
Artificial Intelligence (pp. 725-730). AAAI Press
and MIT Press.

UCI Dataset (2001). UCI Knowledge Discovery in
Databases Archive. http://kdd.ics.uci.edu/ .

Breiman, L. (1996a). Bagging predictors. Machine
Learning, 26, 123-140.

Breiman, L. (199613). Pasting bites together f o r pre-
diction in large
data sets and on-line (Technical Report). Statis-
tics Department, University of California, Berkeley.
ftp.stat. berkeley.edu/pub/users/breiman/pastebite.ps.Z.

Breiman, L. (1998). Arcing classifiers. Annals of
Statistics, 26, 801-824.

Breiman, L., Friedman, J., Olshen, R., & Stone, C.
(1984). Classification and Regression %es. Boca
Raton, Florida: Chapman and Hall/CRC Press.

Cherkauer, K. (1996). Human expert-level perfor-
mance on a scientific image analysis task by a
system using combined artificial neural networks
(Technical Report). Working notes of the AAAI
Workshop on Integrating Multiple Learned Models.
http://www.cs.fit.edu/ imlm/.

Dietterich, T. (2000a). Ensemble methods in ma-
chine learning. Proceedings of the First International
Workshop on Multiple Classifier Systems (pp. 1-15).
Springer Verlag.

Dietterich, T. (2000b). An experimental comparison
of three methods for constructing ensembles of de-
cision trees: Bagging, boosting, and randomization.
Machine Learning, 40, 139-158.

F reud , Y., & Schapire, R. (1996). Experiments with
a new boosting algorithm. Machine Learning: Pro-
ceedings of the Thirteenth International Conference
(pp. 148-156).

http://kdd.ics.uci.edu
http://www.cs.fit.edu

